asatmda

约瑟夫环
约瑟夫问题是个有名的问题:N个人围成一圈,从第一个开始报数,第M个将被杀掉,最后剩下一个,其余人都将被杀掉。例如N...
扫描右侧二维码阅读全文
04
2019/10

约瑟夫环

约瑟夫问题是个有名的问题:N个人围成一圈,从第一个开始报数,第M个将被杀掉,最后剩下一个,其余人都将被杀掉。例如N=6,M=5,被杀掉的顺序是:5,4,6,2,3,1。
分析:
(1)由于对于每个人只有死和活两种状态,因此可以用布尔型数组标记每个人的状态,可用true表示死,false表示活。
(2)开始时每个人都是活的,所以数组初值全部赋为false。
(3)模拟杀人过程,直到所有人都被杀死为止。
首先定义最初的n个数字(0,1,…,n-1)中最后剩下的数字是关于n和m的方程为f(n,m)。

在这n个数字中,第一个被删除的数字是(m-1)%n,为简单起见记为k。那么删除k之后的剩下n-1的数字为0,1,…,k-1,k+1,…,n-1,并且下一个开始计数的数字是k+1。相当于在剩下的序列中,k+1排到最前面,从而形成序列k+1,…,n-1,0,…k-1。该序列最后剩下的数字也应该是关于n和m的函数。由于这个序列的规律和前面最初的序列不一样(最初的序列是从0开始的连续序列),因此该函数不同于前面函数,记为f’(n-1,m)。最初序列最后剩下的数字f(n,m)一定是剩下序列的最后剩下数字f’(n-1,m),所以f(n,m)=f’(n-1,m)。

接下来我们把剩下的的这n-1个数字的序列k+1,…,n-1,0,…k-1作一个映射,映射的结果是形成一个从0到n-2的序列:

k+1    ->    0
k+2    ->    1
...
n-1    ->    n-k-2
0   ->    n-k-1
...
k-1   ->   n-2

把映射定义为p,则p(x)= (x-k-1)%n,即如果映射前的数字是x,则映射后的数字是(x-k-1)%n。对应的逆映射是p-1(x)=(x+k+1)%n。

由于映射之后的序列和最初的序列有同样的形式,都是从0开始的连续序列,因此仍然可以用函数f来表示,记为f(n-1,m)。根据我们的映射规则,映射之前的序列最后剩下的数字f’(n-1,m)= p-1 [f(n-1,m)]=[f(n-1,m)+k+1]%n。把k=(m-1)%n代入得到f(n,m)=f’(n-1,m)=[f(n-1,m)+m]%n。

经过上面复杂的分析,我们终于找到一个递归的公式。要得到n个数字的序列的最后剩下的数字,只需要得到n-1个数字的序列的最后剩下的数字,并可以依此类推。当n=1时,也就是序列中开始只有一个数字0,那么很显然最后剩下的数字就是0。因此有递推公式:

当n=1时,f(n, m) = 0
当n>1时,f(n, m) = [f(n-1, m) +m] % n

因此就可以递归求解,复杂度为 O(n)O(n) 。

时间复杂度分析:O(n)
代码实现:

#include<iostream>
using namespace std;
int myfun(int n,int m){
    if(n==1)
        return 0;
    else{
        return (myfun(n-1,m)+m)%n;
    }
}
int main(){
    int n,m;
    cin>>n>>m;
    cout<<myfun(n,m)<<endl;
    return 0;
}
Last modification:October 4th, 2019 at 03:26 pm
如果觉得我的文章对你有用,请随意赞赏

Leave a Comment